Strong coupling between a photon and a hole spin in silicon, on March 2023.

A new article published in Nature Nanotechnology !

We demonstrate strong coupling between a microwave photon in a superconducting resonator and a hole spin in a silicon-based double quantum dot issued from a foundry-compatible metal–oxide–semiconductor fabrication process. By leveraging the strong spin–orbit interaction intrinsically present in the valence band of silicon, we achieve a spin–photon coupling rate as high as 330 MHz, largely exceeding the combined spin–photon decoherence rate. This result, together with the recently demonstrated long coherence of hole spins in silicon, opens a new realistic pathway to the development of circuit quantum electrodynamics with spins in semiconductor quantum dots.
Read More: Here